Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Disordered iron germanium (FeGe) has recently garnered interest as a testbed for a variety of magnetic phenomena as well as for use in magnetic memory and logic applications. This is partially owing to its ability to host skyrmions and antiskyrmions—nanoscale whirlpools of magnetic moments that could serve as information carriers in spintronic devices. In particular, a tunable skyrmion–antiskyrmion system may be created through precise control of the defect landscape in B20-phase FeGe, motivating the development of methods to systematically tune disorder in this material and understand the ensuing structural properties. To this end, we investigate a route for modifying magnetic properties in FeGe. In particular, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ ions, which creates a dispersion of amorphized regions that may preferentially host antiskyrmions at densities controlled by the irradiation fluence. To further tune the disorder landscape, we conduct a systematic electron diffraction study with in situ annealing, demonstrating the ability to recrystallize controllable fractions of the material at temperatures ranging from ∼150 to 250 °C. Finally, we describe the crystallization kinetics using the Johnson–Mehl–Avrami–Kolmogorov model, finding that the growth of crystalline grains is consistent with diffusion-controlled one-to-two dimensional growth with a decreasing nucleation rate.more » « less
-
Abstract Skyrmions and antiskyrmions are nanoscale swirling textures of magnetic moments formed by chiral interactions between atomic spins in magnetic noncentrosymmetric materials and multilayer films with broken inversion symmetry. These quasiparticles are of interest for use as information carriers in next-generation, low-energy spintronic applications. To develop skyrmion-based memory and logic, we must understand skyrmion-defect interactions with two main goals—determining how skyrmions navigate intrinsic material defects and determining how to engineer disorder for optimal device operation. Here, we introduce a tunable means of creating a skyrmion-antiskyrmion system by engineering the disorder landscape in FeGe using ion irradiation. Specifically, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ions at varying fluences, inducing amorphous regions within the crystalline matrix. Using low-temperature electrical transport and magnetization measurements, we observe a strong topological Hall effect with a double-peak feature that serves as a signature of skyrmions and antiskyrmions. These results are a step towards the development of information storage devices that use skyrmions and antiskyrmions as storage bits, and our system may serve as a testbed for theoretically predicted phenomena in skyrmion-antiskyrmion crystals.more » « less
-
Abstract Iron-based 1111-type superconductors display high critical temperatures and relatively high critical current densitiesJc. The typical approach to increasingJcis to introduce defects to control dissipative vortex motion. However, when optimized, this approach is theoretically predicted to be limited to achieving a maximumJcof only ∼30% of the depairing current densityJd, which depends on the coherence length and the penetration depth. Here we dramatically boostJcin SmFeAsO1–xHxfilms using a thermodynamic approach aimed at increasingJdand incorporating vortex pinning centres. Specifically, we reduce the penetration depth, coherence length and critical field anisotropy by increasing the carrier density through high electron doping using H substitution. Remarkably, the quadrupledJdreaches 415 MA cm–2, a value comparable to cuprates. Finally, by introducing defects using proton irradiation, we obtain highJcvalues in fields up to 25 T. We apply this method to other iron-based superconductors and achieve a similar enhancement of current densities.more » « less
-
We examine the DC and radio frequency (RF) response of superconducting transmission line resonators comprised of very thin NbTiN films, [Formula: see text] in thickness, in the high-temperature limit, where the photon energy is less than the thermal energy. The resonant frequencies of these superconducting resonators show a significant nonlinear response as a function of RF input power, which can approach a frequency shift of [Formula: see text] in a [Formula: see text] span in the thinnest film. The strong nonlinear response allows these very thin film resonators to serve as high kinetic inductance parametric amplifiers.more » « less
-
null (Ed.)Abstract We present an extensive study of vortex dynamics in a high-quality single crystal of HgBa 2 CuO 4+ δ , a highly anisotropic superconductor that is a model system for studying the effects of anisotropy. From magnetization M measurements over a wide range of temperatures T and fields H , we construct a detailed vortex phase diagram. We find that the temperature-dependent vortex penetration field H p ( T ), second magnetization peak H smp ( T ), and irreversibility field H irr ( T ) all decay exponentially at low temperatures and exhibit an abrupt change in behavior at high temperatures T / T c >~ 0.5. By measuring the rates of thermally activated vortex motion (creep) S ( T , H ) = | d ln M ( T , H )/ d ln t |, we reveal glassy behavior involving collective creep of bundles of 2D pancake vortices as well as temperature- and time-tuned crossovers from elastic (collective) dynamics to plastic flow. Based on the creep results, we show that the second magnetization peak coincides with the elastic-to-plastic crossover at low T , yet the mechanism changes at higher temperatures.more » « less
-
One of the most promising routes for achieving high critical currents in superconductors is to incorporate dispersed, non-superconducting nanoparticles to control the dissipative motion of vortices. However, these inclusions reduce the overall superconducting volume and can strain the interlaying superconducting matrix, which can detrimentally reduce Tc. Consequently, an optimal balance must be achieved between the nanoparticle density np and size d. Determining this balance requires garnering a better understanding of vortex–nanoparticle interactions, described by strong pinning theory. Here, we map the dependence of the critical current on nanoparticle size and density in (Y0.77, Gd0.23)Ba2Cu3O7−δ films in magnetic fields of up to 35 T and compare the trends to recent results from time-dependent Ginzburg–Landau simulations. We identify consistency between the field-dependent critical current Jc(B) and expectations from strong pinning theory. Specifically, we find that Jc ∝ B−α, where α decreases from 0.66 to 0.2 with increasing density of nanoparticles and increases roughly linearly with nanoparticle size d/ξ (normalized to the coherence length). At high fields, the critical current decays faster (∼B−1), suggesting that each nanoparticle has captured a vortex. When nanoparticles capture more than one vortex, a small, high-field peak is expected in Jc(B). Due to a spread in defect sizes, this novel peak effect remains unresolved here. Finally, we reveal that the dependence of the vortex creep rate S on nanoparticle size and density roughly mirrors that of α, and we compare our results to low-T nonlinearities in S(T) that are predicted by strong pinning theory.more » « less
An official website of the United States government
